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To use complex simulators to make statements about physical systems (like

climate), we need to quantify the uncertainty involved in moving from the model

to the system.

These questions are both
practical/methodological (how can we work out what climate is likely to be?)

and

foundational (why should our methods work and what do our answers mean?)
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Oil reservoirs An oil reservoir simulator is used to manage assets associated

with the reservoir.

The aim is commercial: to develop efficient production schedules, determine

whether and where to sink new wells, and so forth.

Galaxy formation The study of the development of the Universe is carried out
by using a Galaxy formation simulator.

The aim is scientific - to gain information about the physical processes

underlying the Universe.

Climate change Large scale climate simulators are constructed to assess

likely effects of human intervention upon future climate behaviour.

Aims are both scientific - much is unknown about the large scale interactions
which determine climate - and also very practical, as such simulators provide

evidence for the importance of changing human behaviour before possibly

irreversible changes are set into motion.
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(i) parametric uncertainty (each model requires a, typically high dimensional,

parametric specification)
(ii) condition uncertainty (uncertainty as to boundary conditions, initial

conditions, and forcing functions),

(iii) functional uncertainty (model evaluations take a long time, so the

function is unknown almost everywhere )

(iv) stochastic uncertainty (either the model is stochastic, or it should be),
(v) solution uncertainty (as the system equations can only be solved to some

necessary level of approximation).

(vi) structural uncertainty (the model only approximates the physical system),

(vii) measurement uncertainty (as the model is calibrated against system

data all of which is measured with error),

(viii) multi-model uncertainty (usually we have not one but many models
related to the physical system)

(ix) decision uncertainty (to use the model to influence real world outcomes,

we need to relate things in the world that we can influence to inputs to the

simulator and through outputs to actual impacts. These links are uncertain.)
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General form

Different physical models vary in many aspects, but the formal structures for

analysing the physical system through computer simulators are very similar
(which is why there is a common underlying methodology).

Each simulator can be conceived as a function f(x), where

x: input vector, representing unknown properties of the physical system;

f(x): output vector representing system behaviour.

Interest in general qualitative insights plus some of the following.
the “appropriate” (in some sense) choice, x∗, for the system properties x,

how informative f(x∗) is for actual system behaviour, y.

the use that we can make of historical observations z, observed with error on a

subset yh of y, both to test and to constrain the model,

the optimal assignment of any decision inputs, d, in the model.

[In a climate model, yh might correspond to historical climate outcomes over
space and time, y to current and future climate, and the “decisions” might

correspond to different policy relevant choices such as carbon emission

scenarios.]
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of the system, we can write z = fh(x∗), invert fh to find x∗, learn about all
future components of y = f(x∗) and choose decision elements of x∗ to

optimise properties of y.

COMMENT: This would be very hard.

In practice, the observations z are made with error, and model is not the same

as physical system so we must separate the uncertainty representation into two
relations and carry out statistical inversion/optimisation:

z = yh ⊕ e, y = f(x∗) ⊕ ǫ

where e, ǫ have some appropriate probabilistic specification, possibly involving
parameters which require estimation.

COMMENT: This is much harder.

COMMENT And we still haven’t accounted for condition uncertainty,

multi-model uncertainty, etc.
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However, in practice, it is extremely rare to find a serious quantitification of the

total uncertainty about a complex system arising from the all of the
uncertainties in the model analysis.

Therefore, for all applications, no-one really knows the reliability of the model

based analysis. Therefore, there is no sound basis for identifying appropriate

real world decisions based on such model analyses.

This is because

modellers/scientists don’t think about total uncertainty this way
nor do most statisticians

policy makers don’t know how to frame the right questions for the modellers

there are few funding mechanisms to support this activity

and it is hard!
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In the subjectivist Bayes view, the meaning of any probability statement is the

uncertainty judgement of a specified individual, expressed on the scale of
probability (by consideration of some operational elicitation scheme, for

example by consideration of betting preferences).

This interpretation has an agreed testable meaning, sufficiently precise to act

as the basis of a discussion about the meaning of the analysis.

In this interpretation, any probability statement is the judgement of a named
individual, so we should speak not of the probability of rapid climate change,

but instead of Anne’s probability or Bob’s probability of rapid climate change

and so forth.

There is a big issue of perception here, as most people expect something more

authoritative and objective than a probability which is one person’s judgement.

However, the disappointing thing is that, in almost all cases, stated probabilities
emerging from a complex analysis are not even the judgements of any

individual.

So, it is not unreasonable that the objective of our analysis should be

probabilities which are asserted by at least one person (more would be good!).
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inherent in imperfect computer models of highly complex physical systems,
using a Bayesian formulation. This involves

• prior probability distribution for best inputs x∗

• a probabilistic uncertainty description for the computer function f
• a probabilistic discrepancy measure relating f(x∗) to the system y
• a likelihood function relating historical data z to y

This full probabilistic description provides a formal framework to synthesise

expert elicitation, historical data and a careful choice of simulator runs.

We may then use our collection of computer evaluations and historical

observations to analyse the physical process to

• determine values for simulator inputs (calibration; history matching);

• assess the future behaviour of the system (forecasting).

• “optimise” the performance of the system



Approaches for Bayesian analysis

Within the Bayesian approach, we have two choices.

(i) Full Bayes analysis, with complete joint probabilistic specification of all of the

uncertain quantities in the problem



Approaches for Bayesian analysis

Within the Bayesian approach, we have two choices.

(i) Full Bayes analysis, with complete joint probabilistic specification of all of the

uncertain quantities in the problem

or

(ii) Bayes linear analysis, based on a prior specification of the means, variances

and covariances of all quantities of interest, where we make expectation, rather
than probability, the primitive for the theory, following de Finetti “Theory of

Probability”(1974,1975).



Approaches for Bayesian analysis

Within the Bayesian approach, we have two choices.

(i) Full Bayes analysis, with complete joint probabilistic specification of all of the

uncertain quantities in the problem

or

(ii) Bayes linear analysis, based on a prior specification of the means, variances

and covariances of all quantities of interest, where we make expectation, rather
than probability, the primitive for the theory, following de Finetti “Theory of

Probability”(1974,1975).

de Finetti chooses expectation over probability as, if expectation is primitive,

then we can choose to make as many or as few expectation statements as we

choose, whereas, if probability is primitive, then we must make all of the

probability statements before we can make any of the expectation statements,
so that we have the option of restricting our attention to whatever subcollection

of specifications we are interested in analysing carefully.



Approaches for Bayesian analysis

Within the Bayesian approach, we have two choices.

(i) Full Bayes analysis, with complete joint probabilistic specification of all of the

uncertain quantities in the problem

or

(ii) Bayes linear analysis, based on a prior specification of the means, variances

and covariances of all quantities of interest, where we make expectation, rather
than probability, the primitive for the theory, following de Finetti “Theory of

Probability”(1974,1975).

de Finetti chooses expectation over probability as, if expectation is primitive,

then we can choose to make as many or as few expectation statements as we

choose, whereas, if probability is primitive, then we must make all of the

probability statements before we can make any of the expectation statements,
so that we have the option of restricting our attention to whatever subcollection

of specifications we are interested in analysing carefully.

Full Bayes analysis can be more informative if done extremely carefully, both in

terms of the prior specification and the analysis. Bayes linear analysis is partial

but easier, faster, more robust particularly for history matching and forecasting.
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For very large scale problems a full Bayes analysis is very hard because

(i) it is difficult to give a meaningful full prior probability specification over high
dimensional spaces;

(ii) the computations, for learning from data (observations and computer runs),

particularly when choosing informative runs, may be technically difficult;

(iii) the likelihood surface is extremely complicated, and any full Bayes

calculation may be extremely non-robust.
However, the idea of the Bayesian approach, namely capturing our expert prior

judgements in stochastic form and modifying them by appropriate rules given

observations, is conceptually appropriate (and there is no obvious alternative).

The Bayes Linear approach is (relatively) simple in terms of belief specification

and analysis, as it is based only on the mean, variance and covariance

specification which, following de Finetti, we take as primitive.
For a full account, see

Michael Goldstein and David Wooff (2007) Bayes Linear Statistics: Theory and

Methods, Wiley.
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Bayes Linear adjustment of the mean and the variance of y given z is

Ez[y] = E(y) + Cov(y, z)Var(z)−1(z − E(z)),
Varz[y] = Var(y) − Cov(y, z)Var(z)−1Cov(z, y)

Ez[y], Varz[y] are the expectation and variance for y adjusted by z.
Bayes linear adjustment may be viewed as:

an approximation to a full Bayes analysis;

or

the “appropriate” analysis given a partial specification based on expectation as

primitive (with methodology for modelling, interpretation and diagnostics).
The foundation for the approach is an explicit treatment of temporal uncertainty,

and the underpinning mathematical structure is the inner product space (not

probability space, which is just a special case).
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Uncertainty analysis, for high dimensional problems, is even more challenging if

the function f(x) is expensive, in time and computational resources, to
evaluate for any choice of x. [For example, large climate models.]

In such cases, f must be treated as uncertain for all input choices except the

small subset for which an actual evaluation has been made.

Therefore, we must construct a description of the uncertainty about the value of

f(x) for each x.
Such a representation is often termed an emulator of the function - the

emulator both suggests an approximation to the function and also contains an

assessment of the likely magnitude of the error of the approximation.

We use the emulator either to provide a full joint probabilistic description of all

of the function values (full Bayes) or to assess expectations variances and

covariances for pairs of function values (Bayes linear).
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We may represent beliefs about component fi of f , using an emulator:

fi(x) =
∑

j βijgij(x) ⊕ ui(x)

where B = {βij} are unknown scalars, gij are known deterministic functions

of x, ui(x) is a weakly second order stationary stochastic process, with (for

example) correlation function

Corr(ui(x), ui(x
′)) = exp(−(‖x−x′‖

θi
)2)

Bg(x) expresses global variation in f . u(x) expresses local variation in f
We fit the emulators, given a collection of carefully chosen model evaluations,

using our favourite statistical tools - generalised least squares, maximum

likelihood, Bayes - with a generous helping of expert judgement.

We need careful (multi-output) experimental design to choose informative

model evaluations, and detailed diagnostics to check emulator validity.
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If the simulator is really slow to evaluate, then we emulate by jointly modelling

the simulator with a fast approximate version, f ′, plus older generations of the
simulator which we’ve already emulated and so forth.

So, for example, based on many fast simulator evaluations, we build emulator

f ′
i(x) =

∑
j β′

ijgij(x) ⊕ u′
i(x)

We use this form as the prior for the emulator for fi(x).

Then a relatively small number of evaluations of fi(x), using relations such as

βij = αiβ
′
ij + γij

lets us adjust the prior emulator to an appropriate posterior emulator for fi(x).

[This approach exploits the heuristic that we need many more function

evaluations to identify the qualitative form of the model (i.e. choose appropriate

forms gij(x), etc) than to assess the quantitative form of all of the terms in the

model - particularly if we fit meaningful regression components.]
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Illustration from RAPID (thanks to Danny Williamson)

One of the main aims of the RAPIT programme is to assess the risk of

shutdown of the AMOC (Atlantic Meridionnal Overturning Circulation)which
transports heat from the tropics to Northern Europe and how this risk depends

on the future emissions scenario for CO2.

RAPIT aims to use large ensembles of the UK Met Office climate model

HadCM3, run through climateprediction.net

[Our first ensemble of 20,000 runs is out now.]

As a preliminary demonstration of concept for the Met Office, we were asked to
develop an emulator for HadCM3, based on 24 runs of the simulator, with a

variety of parameter choices and future CO2 scenarios.

We had access to some runs of FAMOUS (a lower resolution model), which

consisted of 6 scenarios for future CO2 forcing, and between 40 and 80 runs of

FAMOUS under each scenario, with different parameter choices.
[And very little time to do the analysis.]
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Design

Our design was

(i) to match the inputs for 8 of the HadCM3 runs with corresponding inputs to a
FAMOUS run (to help us to compare the models)

(ii) to construct a 16 run Latin hypercube over different parameter choices and

CO2 scenarios (to extend the model across CO2 space).

In this experiment only 3 parameters were varied (an entrainment coefficient in

the model atmosphere, a vertical mixing parameter in the ocean, and the solar

constant).
Our output of interest was a 170 year time series of AMOC values. The series

is noisy and and the location and direction of spikes in the series was not

important. Interest concerned aspects such as the value and location of the

smoothed minimum of the series and the amount that AMOC responds to CO2

forcing and recovers if CO2 forcing is reduced.
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Smoothing

We smooth by fitting splines f s(x, t) = Σjcj(x)Bj(t) where Bj(t) are basis

functions over t and cj(x) are chosen to give the ‘best’ smooth fit to the time

series.



Smoothing



FAMOUS emulation

We emulate f s by emulating each coefficient cj(x) in

f s(x, t) = Σjcj(x)Bj(t) (separately for each CO2 scenario)



Diagnostics (leave one out)

We test our approach by building emulators leaving out each observed run in

turn, and checking whether the run falls within the stated uncertainty limits.



Emulating HadCM3

We now have an emulator for the smoothed version of FAMOUS, for each of

the 6 CO2 scenarios.



Emulating HadCM3

We now have an emulator for the smoothed version of FAMOUS, for each of

the 6 CO2 scenarios.
Next steps

[1] Extend the FAMOUS emulator across all choices of CO2 scenario.

[We do this using fast geometric arguments, exploiting the speed of working in

inner product spaces. For example, we have a different covariance matrix for

local variation at each of 6 CO2 scenarios. We extend this specification to all

possible CO2 scenarios by identifying each covariance matrix as an element of
an appropriate inner product space, and adjusting beliefs over covariance

matrix space by projection.]



Emulating HadCM3

We now have an emulator for the smoothed version of FAMOUS, for each of

the 6 CO2 scenarios.
Next steps

[1] Extend the FAMOUS emulator across all choices of CO2 scenario.

[We do this using fast geometric arguments, exploiting the speed of working in

inner product spaces. For example, we have a different covariance matrix for

local variation at each of 6 CO2 scenarios. We extend this specification to all

possible CO2 scenarios by identifying each covariance matrix as an element of
an appropriate inner product space, and adjusting beliefs over covariance

matrix space by projection.]

[2] Develop relationships between the elements of the emulator for FAMOUS

and the corresponding emulator for HadCM3, using the paired runs, and expert

judgements. This gives an informed prior for the HadCM3 emulator.



Emulating HadCM3

We now have an emulator for the smoothed version of FAMOUS, for each of

the 6 CO2 scenarios.
Next steps

[1] Extend the FAMOUS emulator across all choices of CO2 scenario.

[We do this using fast geometric arguments, exploiting the speed of working in

inner product spaces. For example, we have a different covariance matrix for

local variation at each of 6 CO2 scenarios. We extend this specification to all

possible CO2 scenarios by identifying each covariance matrix as an element of
an appropriate inner product space, and adjusting beliefs over covariance

matrix space by projection.]

[2] Develop relationships between the elements of the emulator for FAMOUS

and the corresponding emulator for HadCM3, using the paired runs, and expert

judgements. This gives an informed prior for the HadCM3 emulator.
[3] Use the remaining runs of HadCM3 to Bayes linear update the emulator for

HadCM3.



Emulating HadCM3

We now have an emulator for the smoothed version of FAMOUS, for each of

the 6 CO2 scenarios.
Next steps

[1] Extend the FAMOUS emulator across all choices of CO2 scenario.

[We do this using fast geometric arguments, exploiting the speed of working in

inner product spaces. For example, we have a different covariance matrix for

local variation at each of 6 CO2 scenarios. We extend this specification to all

possible CO2 scenarios by identifying each covariance matrix as an element of
an appropriate inner product space, and adjusting beliefs over covariance

matrix space by projection.]

[2] Develop relationships between the elements of the emulator for FAMOUS

and the corresponding emulator for HadCM3, using the paired runs, and expert

judgements. This gives an informed prior for the HadCM3 emulator.
[3] Use the remaining runs of HadCM3 to Bayes linear update the emulator for

HadCM3.

[4] Diagnostic checking, tuning etc.



Emulating HadCM3:diagnostics



Emulating HadCM3
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and/or gas. The hydrocarbons are trapped above by a layer of impermeable
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Example: Oil Reservoirs

• A oil reservoir is an underground region of porous rock which contains oil

and/or gas. The hydrocarbons are trapped above by a layer of impermeable
rock and below by a body of water, thus creating the reservoir. The oil and

gas are pumped out of the reservoir and fluids are pumped into the

reservoir (to boost production).

• The simulator models the flows and distributions of contents of the reservoir

over time
• Our Bayes linear approach to reservoir history matching has been

implemented in software in use with Phillips-Conoco, Anadarko, Shell,

Saudi-Aramco, ..

• Example - Oil field containing 650 wells, 1 million plus grid cells

(permeability, porosity, fault lines, etc.). Previous history match took one

man-year of effort. Our methods found a match using 32 runs, each lasting
4 hours and automatically chosen with a overall fourfold improvement in fit.
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Each cell in the reservoir has a collection of associated input parameters, such

as permeability and porosity. There are also other parameters, such as Fault

transmissibility, Aquifer features, Saturation properties
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use scalar multipliers over subregions, to modify values.
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Inputs
Each cell in the reservoir has a collection of associated input parameters, such

as permeability and porosity. There are also other parameters, such as Fault

transmissibility, Aquifer features, Saturation properties

Since there are a huge number of these cells in the reservoir it is common to

use scalar multipliers over subregions, to modify values.
Outputs

• The model outputs comprise the behaviour of the various wells and

injectors in the reservoir

• Output is a time series on the following variables for each well

◦ Pressures Bottom-hole pressure, Tubing head pressure

◦ Production/Injection rates and totals for each of oil, water and gas.
◦ Fluid ratios Water cut, Gas-oil ratio

• The resolution of the time series can be varied from months to years

• With a large number of wells, daily output, or a long operating period there

will be a lot of output data



A reservoir example: (thanks to Jonathan Cumming)

The model, based on grid size 38 × 87 × 25, with 43 production and 13

injection wells, simulates 10 years of production, 1.5–3 hours per simulation.
Inputs Field multipliers for porosity (φ), permeabilities (kx, kz), critical

saturation (crw), and aquifer properties (Ap, Ah)

Outputs Oil production rate for a 3-year period, for the 10 production wells

active in that period. 4-month averages over the time series

Emulator for reservoir simulator is: fi(x) = gi(x[i])βi + ui(x[i]) + vi(x)

gi(x[i])
T βi – a global trend function which captures the gross features,

x[i] – a subset of inputs which account for most of the variation in F , the active
variables, ui(x[i]) – a correlated residual process representing the local

behaviour in the active variables, vi(x) – an uncorrelated ‘nugget’ residual.
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The computer model is expensive to evaluate, so we use ‘coarse’ model, F c,to

capture qualitative features of F . F c is substantially faster, allowing many
model runs. We construct emulator f c of F c from these runs and a framework

linking f c and f . We make (small) number of runs of F , and update our

emulator f .

Obtain F c by coarsening vertical gridding by factor of 10.

1000 runs of F c in a Latin Hypercube over the input parameters

Screen the wells (Principal Variables methods) – 4 wells capture 87% of the
total variation

We fit emulators to each output individually, using information from the model

runs (stepwise regression and generalised least squares) to get emulator

f c
i (x) for F c

i .

We consider the coarse and the full model emulators to have the form
f c

i (x) = gi(x[i])
T βc

i + wc
i (x), fi(x) = gi(x[i])

T βi + wc
i (x)βwi

+ wa
i (x)

(linked via the equations relating the pairs of coefficients)

Careful choice of small design to evaluate for full simulator allows us to (Bayes

linear) update emulator for F based on prior emulator and additional runs.



Emulation Summaries

Well Time x[i] No. Model Coarse Accurate

Terms Simulator R2 Simulator R̃2

B2 4 φ, crw, Ap 9 0.886 0.951

B2 8 φ, crw, Ap 7 0.959 0.958

B2 12 φ, crw, Ap 10 0.978 0.995

B2 16 φ, crw, kz 7 0.970 0.995

B2 20 φ, crw, kx 11 0.967 0.986
B2 24 φ, crw, kx 10 0.970 0.970

B2 28 φ, crw, kx 10 0.975 0.981

B2 32 φ, crw, kx 11 0.980 0.951

B2 36 φ, crw, kx 11 0.983 0.967
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Model calibration aims to identify “true” input parameters x∗. However

(i) We may not believe in a unique true input value for the model;

(ii) We may be unsure whether there are any good choices of input parameters

(due to model deficiencies)

(iii) Full Bayes calibration analysis may be very difficult/non-robust.
A conceptually simple alternative is “history matching”, i.e. finding the collection

of all input choices x for which you judge the match of the model to the data,

‖z − fh(x)‖ to be acceptably small, using some ”‘implausibility measure”’

I(x) based on a natural probabilistic metric, accounting for emulator

uncertainty, condition uncertain, structural discrepancy, observational error etc.

In practice, we proceed by sequentially ruling out regions of x space which are
unlikely to give rise to observed history z.
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History matching via Implausibility

Using the emulator we can obtain, for each set of inputs x, the mean and

variance, E(Fh(x)) and Var(Fh(x)).

As zi = yi + ei, yi = F ∗
i + ǫi,

if x = x∗, then

Var(zi − E(Fi(x))) = Var(Fi(x)) + Var(ǫi) + Var(ei).

We can therefore calculate, for each output Fi(x), the “implausibility” if we

consider the value x to be the best choice x∗, which is the standardised

distance between zi and E(Fi(x)), which is

I(i)(x) = |zi − E(Fi(x))|2/[Var(Fi(x)) + Var(ǫi) + Var(ei)]

[Large values of I(i)(x) suggest that it is implausible that x = x∗.]
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Using Implausibility measures

The implausibility calculation can be performed univariately, or by multivariate

calculation over sub-vectors. The implausibilities are then combined, such as
by using IM (x) = maxi I(i)(x), and can then be used to identify regions of x
with large IM (x) as implausible, i.e. unlikely to be good choices for x∗.

With this information, we can then refocus our analysis on the ‘non-implausible’

regions of the input space, by

(i) making more simulator runs
(ii) refitting our emulator

over such sub-regions and repeating the analysis.

This process is a form of iterative global search aimed at finding all choices of

x∗ which would give good fits to historical data.

Comment We may find no good choices at all which give good fits and that is a

clear sign of problems with our physical simulator or with our data.
Comment : Even if calibrating, it is good practice to history match first, to check

model and (massively) reduce search space.
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Refocusing

• Make the restriction X ∗ = {x : I(x) ≤ 4} ≃ {x : φ < 0.79} and

eliminate 90% of the input space

• Now consider final 4 time points in original data, plus an additional point 1
year beyond the end of the previous series to be forecast

• Since reducing the space many of the old model runs are no longer valid, so

supplement with additional evaluations

• 262+100 coarse runs, 6+20 accurate runs

• Re-fit the coarse and fine emulators, using the old emulator structure as a
starting point
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Forecasting

The mean and variance of F (x) are obtained from the mean function and

variance function of the emulator f for F . Using these values, we compute the

mean and variance of F ∗ = F (x∗) by first conditioning on x∗ and then
integrating out x∗.

Given E(F ∗), Var(F ∗), and the model discrepancy, ǫ and sampling error e
variances, it is now straightforward to compute the joint mean and variance of

the collection (y, z) (as y = F ∗ + ǫ, z = y + e).

We now evaluate the adjusted mean and variance for yp adjusted by z using
the Bayes linear adjustment formulae. This analysis is tractable even for large

systems.

(When the forecast variance is large, then we have methods to improve

forecast accuracy.)

Comment Our computer experiments to forecast yp split into two stages

(i) preliminary simulator evaluations to identify the form of emulator, estimate
coefficient matrices and refocus

(ii) further simulator evaluations chosen to minimise adjusted forecast variance.
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Simulator outputs, observational data and forecasts for each well.

Green lines indicate z with error bounds of 2sd(e).
Red and blue lines represent the range of the runs of F (x) and F c(x)
Solid black dots correspond to E(F ∗).

The forecast is indicated by a hollow circle with attached error bars.
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The Galform Model (thanks to Ian Vernon)

• The Cosmologists at the ICC are interested in modelling galaxy formation in

the presence of Dark Matter.

• First a Dark Matter simulation is performed over a volume of (1.63 billion

light years)3. This takes 3 months on a supercomputer.

• Galform takes the results of this simulation and models the evolution and
attributes of approximately 1 million galaxies.

• Galform requires the specification of 17 unknown inputs in order to run.

• It takes approximately 1 day to complete 1 run (using a single processor).

• The Galform model produces lots of outputs, some of which can be

compared to observed data from the real Universe.



The Dark Matter Simulation



The Galform Model
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Inputs

To perform one run, we need to specify the following 17 inputs:

vhotdisk : 100 - 550 VCUT: 20 - 50

aReheat : 0.2 - 1.2 ZCUT: 6 - 9
alphacool : 0.2 - 1.2 alphastar : -3.2 - -0.3

vhotburst : 100 - 550 tau0mrg : 0.8 - 2.7

epsilonStar : 0.001 - 0.1 fellip : 0.1 - 0.35

stabledisk : 0.65 - 0.95 fburst : 0.01 - 0.15

alphahot : 2 - 3.7 FSMBH: 0.001 - 0.01
yield : 0.02 - 0.05 eSMBH: 0.004 - 0.05

tdisk : 0 - 1

Galform provides multiple output data sets. Initially we analyse luminosity

functions giving the number of galaxies per unit volume, for each luminosity.

Bj Luminosity: corresponds to density of young (blue) galaxies

K Luminosity: corresponds to density of old (red) galaxies

We choose 11 outputs that are representative of the Luminosity functions and
emulate the functions fi(x).
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Summary of Results

We assess condition uncertainty, structural uncertainty, measurement

uncertainty, etc. then carry out the iterative history matching procedure,

through 4 waves.

(In wave 5, we evaluate many good fits to data, and we stop. Some of these

choices give simultaneous matches to data sets that the Cosmologists have

been unable to match before.)

No. Model Runs No. Active Vars Space Remaining

Wave 1 1000 5 14.9 %

Wave 2 1414 8 5.9 %

Wave 3 1620 8 1.6 %

Wave 4 2011 10 0.12 %
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Linking models to reality

The reason that the evaluations of the simulator are informative for the physical

system is that the evaluations are informative about the general relationships
between system properties, x, and system behaviour y.

More generally, evaluations of a collection of models are jointly informative for

the physical system as they are jointly informative for these general

relationships.

Therefore, our inference from model to reality should proceed in two parts.
[1] We emulate the relationship between system properties and system

behaviour (we call this relationship the “reified model” (from reify: to treat an

abstract concept as if it were real).

[2] We decompose the difference between our model and the physical system

into two parts.

[A] The difference between our simulator and the reified form.
[B] The difference between the reified form at the physically appropriate choice

of x and the actual system behaviour y.
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Relating models and the system

Reifying principle [1]
Simulator F is informative for y, because F is informative for F ∗ and F ∗(x∗)
is informative for y.

Model, F

{{xx
xx

xx
xx

xx

��

‘Best’ input, x∗

��

Discrepancy

��

Measurement
error

��

Model
evaluations F ∗ // F ∗(x∗) // Actual

system
// System
observations

Reifying principle [2]
A collection of simulators F1, F2, ... is jointly informative for y, as the

simulators are jointly informative for F ∗.
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Suppose that our emulator for F is

f(x) = Bg(x) ⊕ u(x)

Our simplest emulator for F ∗ might be

f∗(x, w) = B∗g(x) ⊕ u∗(x) ⊕ u∗(x, w)

where we might model our judgements as B∗ = CB + Γ, correlate u(x) and

u∗(x), while u∗(x, w), with additional parameters, w, is uncorrelated with
remainder.

Structured reification improves on this with systematic modelling for all aspects

of model deficiency whose effects we can consider explicitly.

All our calibration and forecasting methodology is unchanged - all that has

changed is our description of the joint covariance structure.
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passes to Reified global form and to reified emulator.
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runs from related models (more exchangeability modelling).
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Add evaluations of fast simulator for outcomes to be predicted, with decision

choices d



A Reified influence diagram

MME e

��[

F 1
h:[n](x), . . . , Fm

h:[n](x)
]

// Fh:suff
// F ∗

h:suff
//

��

f∗

h(x) // F ∗

h (x∗) //

OO

yh // z

ǫh

OO

x∗

OO

F ′

h:[n](x) // F ′

h:suff

OO

F ′

p:[n](x, d) // F ′

p:suff
//

OO

F ∗

p:suff

Link to reified global terms for quantities to be predicted



A Reified influence diagram

MME e

��[

F 1
h:[n](x), . . . , Fm

h:[n](x)
]

// Fh:suff
// F ∗

h:suff
//

��

f∗

h(x) //

��

F ∗

h (x∗) //

OO

yh // z

ǫh

OO

x∗

OO

F ′

h:[n](x) // F ′

h:suff

OO

F ′
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F ∗
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// f∗

p (x, d)

And to reified global emulator, based on inputs and decisions
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F ∗
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��
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C

And link, through true future values yp, to the overall utility cost C of making

decision choice d∗ [Attach more models to diagram at F ∗(x∗)]
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Concluding comments

To assess our uncertainty about complex systems, it is enormously helpful to

have an overall (Bayesian) framework to unify all of the sources of uncertainty.

Within this framework, all of the scientific, technical, computational, statistical

and foundational issues can be addressed in principle.

Such analysis poses serious challenges, but they are no harder than all of the
other modelling, computational and observational challenges involved with

studying complex systems.

In particular,

Bayesian multivariate, multi-level, multi-model emulation,

careful structural discrepancy modelling
and iterative history matching

gives a great first pass treatment for most large modelling problems.
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